Respuesta :

Answer:

The equation of the line:

  • [tex]y\:=\:\frac{-3}{2}x\:+\frac{7}{2}[/tex]

Step-by-step explanation:

We know the slope-intercept of line equation is

[tex]y = mx+b[/tex]

where m is the slope and b is the y-intercept

Given the points

  • (3, -1)
  • (-1, 5)

Finding the slope between two points (3, -1) and (-1, 5)

[tex]\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(3,\:-1\right),\:\left(x_2,\:y_2\right)=\left(-1,\:5\right)[/tex]

[tex]m=\frac{5-\left(-1\right)}{-1-3}[/tex]

[tex]m=-\frac{3}{2}[/tex]

substituting m = -3/2 and the point (3, -1) in the slope-intercept form

[tex]y = mx+b[/tex]

[tex]-1=-\frac{3}{2}\left(3\right)+b[/tex]

[tex]-\frac{9}{2}+b=-1[/tex]

Add 9/2 to both sides

[tex]-\frac{9}{2}+b+\frac{9}{2}=-1+\frac{9}{2}[/tex]

[tex]b=\frac{7}{2}[/tex]

now substituting b = 7/2 and m = -3/2 in the slope-intercept form

[tex]y = mx+b[/tex]

[tex]y\:=\:\frac{-3}{2}x\:+\frac{7}{2}[/tex]

Therefore, the equation of the line:

  • [tex]y\:=\:\frac{-3}{2}x\:+\frac{7}{2}[/tex]