Respuesta :

Answer:

Step-by-step explanation:

Formula to be used,

A = [tex]P(1+\frac{r}{n})^{nt}[/tex]

Here, A = Final amount

P = Principal amount

r = rate of interest

n = Number of compounding (In a year)

t = Duration of investment (In years)

Question (5)

P = $4250

r = 0.015

n = 4

t = 3 years

A = [tex]4250(1+\frac{0.015}{4})^{4\times 3}[/tex]

A = [tex]4250(1.00375)^{12}[/tex]

A = $4445.24

Part (C)

1). P = $6000

   r = 0.03

   n = 2

   t = 10 years

  A = [tex]6000(1+\frac{0.03}{2})^{2\times 10}[/tex]

      = [tex]6000(1.015)^{20}[/tex]

      = $8081.13

2). P = $9000

    r = 0.05

    n = 2

    t = 8 years

    A = [tex]9000(1+\frac{0.05}{2})^{2\times 8}[/tex]

        = [tex]9000(1.025)^{16}[/tex]

        = $13360.55