Respuesta :

Answer:

Area of triangle ABC = 10

Option C is correct.

Step-by-step explanation:

We need to find area of triangle ABC

We are given A(2,1) B(4,7) and C(6,3)

The formula used to find [tex]Area \ of \ triangle=\frac{1}{2}base\times height[/tex] ABC is:

In the given triangle base= AC and height = BC

First we need to find the distance between A and C and B and C

The formula used to find distance between AC [tex]Distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

We have [tex]x_1=2, y_1=1, x_2=6, y_2=3[/tex]

Putting values and finding distance

[tex]Distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\\Distance=\sqrt{(6-2)^2+(3-1)^2}\\Distance=\sqrt{(4)^2+(2)^2}\\Distance=\sqrt{16+4}\\Distance=\sqrt{20}[/tex]

find distance between BC [tex]Distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

We have [tex]x_1=4, y_1=7, x_2=6, y_2=3[/tex]

Putting values and finding distance

[tex]Distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\\Distance=\sqrt{(6-4)^2+(3-7)^2}\\Distance=\sqrt{(2)^2+(4)^2}\\Distance=\sqrt{4+16}\\Distance=\sqrt{20}[/tex]

So, We have height = [tex]\sqrt{20}[/tex] and base = [tex]\sqrt{20}[/tex]

Finding area of triangle

[tex]Area \ of \ triangle=\frac{1}{2}base\times height\\Area \ of \ triangle=\frac{1}{2}\sqrt{20} \times \sqrt{20} \\Area \ of \ triangle=\frac{1}{2}\times 20\\Area \ of \ triangle=10[/tex]

So, Area of triangle ABC = 10

Option C is correct.