Respuesta :

Answer:

d. - peak

Explanation:

In alternating current, the voltage is represented by the following formula:

[tex]V=V_{max}sin(\omega t+\phi)[/tex]

where,

[tex]V_{max}[/tex]=Maximum voltage

[tex]\omega[/tex]=Angular frequency

[tex]\phi[/tex]=phase shift

t=time

The angular frequency can be written in terms of the period (T), so:

[tex]\omega=\frac{2\pi}{T}[/tex]

So the equation will now lok like this:

[tex]V=V_{max}sin(\frac{2\pi}{T} t+\phi)[/tex]

we know that [tex]\phi=\frac{\pi}{2}[/tex] and that [tex]t=\frac{T}{2}[/tex] so the equation will now look like this:

[tex]V=V_{max}sin(\frac{2\pi}{T} (\frac{T}{2})+\frac{\pi}{2})[/tex]

which can be simplified to:

[tex]V=V_{max}sin(\pi+\frac{\pi}{2})[/tex]

[tex]V=V_{max}sin(\frac{3\pi}{2})[/tex]

Which solves to:

[tex]V=-V_{max}[/tex]

so the answer is d. -peak