contestada

How much energy is required to move a 1000 kg object from the Earth's surface to an altitude twice the Earth's radius?

Respuesta :

An energy of [tex]4.171\times 10^{10}[/tex] joules to move a 1000-kg object from the Earth's surface to an altitude twice the Earth's radius.

Since the object must be moved away to a distance greater than the radius of the Earth, then change in gravitational potential energy must be based on Newton's Law of Gravitation.

By the Work-Energy Theorem, the work ([tex]W[/tex]), in joules, done on the object is equal to the change in gravitational potential energy ([tex]U_{g}[/tex]), in joules:

[tex]W = U_{g}[/tex] (1)

[tex]W = -G\cdot m\cdot M\cdot \left(\frac{1}{r_{f}}-\frac{1}{r_{o}} \right)[/tex] (1b)

Where:

  • [tex]G[/tex] - Gravitational constant, in cubic meters per kilogram-square second.
  • [tex]m[/tex] - Mass of the object, in kilograms.
  • [tex]M[/tex] - Mass of the Earth, in kilograms.
  • [tex]r_{o}[/tex] - Initial distance, in meters.
  • [tex]r_{f}[/tex] - Final distance, in meters.

If we know that [tex]G = 6.674\times 10^{-11}\,\frac{m^{3}}{kg\cdot s^{2}}[/tex], [tex]m = 1000\,kg[/tex], [tex]M = 5.972\times 10^{24}\,kg[/tex], [tex]r_{o} = 6.371\times 10^{6}\,m[/tex] and [tex]r_{f} = 19.113\times 10^{6}\,m[/tex], then the energy required to move the object from the Earth's surface is:

[tex]W = -\left(6.674\times 10^{-11}\,\frac{m^{3}}{kg\cdot s^{2}} \right)\cdot (1000\,kg)\cdot (5.972\times 10^{24}\,kg)\cdot \left[\frac{1}{19.113\times 10^{6}\,m} - \frac{1}{6.371\times 10^{6}\,m} \right][/tex][tex]W = 4.171\times 10^{10}\,J[/tex]

An energy of [tex]4.171\times 10^{10}[/tex] joules to move a 1000-kg object from the Earth's surface to an altitude twice the Earth's radius.

We kindly invite to check this question on gravitational potential energy: https://brainly.com/question/19768887