Identify the equation in point-slope form for the perpendicular bisector of the segment with endpoints J(−24,−4) and K(−4,6).


Option A:

y + 6 = 2(x − 4)


Option B:

y − 6 = 2(x + 4)


Option C:

y + 1 = −2(x − 14)


Option D:

y − 1 = −2(x + 14)

Respuesta :

Given:

Endpoints of a segment are J(−24,−4) and K(−4,6).

To find:

The equation in point-slope form for the perpendicular bisector of JK.

Solution:

Slope of JK is

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

[tex]m=\dfrac{6-(-4)}{-4-(-24)}[/tex]

[tex]m=\dfrac{6+4}{-4+24}[/tex]

[tex]m=\dfrac{10}{20}[/tex]

[tex]m=\dfrac{1}{2}[/tex]

Product of slopes of two perpendicular lines is -1. So, product of perpendicular line of JK is -2.

Perpendicular bisector of JK passes through the midpoint of JK.

[tex]Midpoint=\left(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\right)[/tex]

[tex]Midpoint=\left(\dfrac{-24-4}{2},\dfrac{-4+6}{2}\right)[/tex]

[tex]Midpoint=\left(\dfrac{-28}{2},\dfrac{2}{2}\right)[/tex]

[tex]Midpoint=\left(-14,1\right)[/tex]

Point slope form:

[tex]y-y_1=m(x-x_1)[/tex]

where, m is slope.

Perpendicular bisector of JK passes through (-14,1) with slope -2. So, the point slope form of JK is

[tex]y-1=-2(x-(-14))[/tex]

[tex]y-1=-2(x+14)[/tex]

Therefore, the correct option is D.