Answer:
[tex]\frac{5}{6}[/tex]x-10
Step-by-step explanation:
([tex]\frac{1}{3}[/tex]x-8)+([tex]\frac{1}{2}[/tex]x-2) = [tex]\frac{1}{3}[/tex]x-8+[tex]\frac{1}{2}[/tex]x-2
[tex]\frac{1}{3}[/tex]x-8+[tex]\frac{1}{2}[/tex]x-2 = [tex]\frac{1}{3}[/tex]x+[tex]\frac{1}{2}[/tex]x-10
If you -8 then -2, you are subtracting 10 from the equation in total.
[tex]\frac{1}{3}[/tex]x+[tex]\frac{1}{2}[/tex]x-10 = [tex]\frac{2}{6}[/tex]x+[tex]\frac{3}{6}[/tex]x-10
To make the denominator the same, I will multiply the first fraction by 2 and the second fraction by 3 so that their denominators are 6.
[tex]\frac{2}{6}[/tex]x+[tex]\frac{3}{6}[/tex]x-10 = [tex]\frac{5}{6}[/tex]x-10
Once the denominators are the same, you can do the working for the numerators directly (2+3=5) and keep the denominator the same.