Respuesta :

Answer:

The function [tex]f(x)=x^3+\mathbf{1}x^2-\mathbf{17}x+\mathbf{15}[/tex]

Step-by-step explanation:

We have the polynomial having zeros 1,3,-5

We can write them as:

x=1,x=3,x=-5

or

x-1=0, x-3=0,x+5=0

Multiplying all terms:

[tex](x-1)(x-3)(x+5)\\=(x(x-3)-1(x-3))(x+5)\\=(x^2-3x-1x+3)(x+5)\\=(x^2-4x+3)(x+5)\\=(x^2-4x+3)+5(x^2-4x+3)\\=^3-4x^2+3x+5x^2-20x+15\\=x^3-4x^2+5x^2+3x-20x+15\\=x^3+x^2-17x+15[/tex]

So, The function [tex]f(x)=x^3+\mathbf{1}x^2-\mathbf{17}x+\mathbf{15}[/tex]