Answer:
[tex]Rate = -52[/tex]
Step-by-step explanation:
Given
[tex]g(x) = -4x^3 + 1[/tex]
x = -4 to x = 1
Required
Determine the average rate of change
This is calculated using:
[tex]Rate = \frac{g(b) - g(a)}{b - a}[/tex]
Where
[tex]a = x = -4[/tex]
[tex]b = x = 1[/tex]
Calculating g(b):
g(b) = g(1)
If [tex]g(x) = -4x^3 + 1[/tex], then
[tex]g(1) = -4(1)^3 + 1[/tex]
[tex]g(1) = -4*1 + 1[/tex]
[tex]g(1) = -4 + 1[/tex]
[tex]g(1) = -3[/tex]
Calculating g(a):
g(a) = g(-4)
If [tex]g(x) = -4x^3 + 1[/tex], then
[tex]g(-4) = -4(-4)^3 + 1[/tex]
[tex]g(-4) = -4*-64 + 1[/tex]
[tex]g(-4) = 256 + 1[/tex]
[tex]g(-4) = 257[/tex]
So, the formula:
[tex]Rate = \frac{g(b) - g(a)}{b - a}[/tex]
becomes
[tex]Rate = \frac{g(1) - g(-4)}{1 - (-4)}[/tex]
[tex]Rate = \frac{g(1) - g(-4)}{1+4}[/tex]
[tex]Rate = \frac{g(1) - g(-4)}{5}[/tex]
[tex]Rate = \frac{-3 - 257}{5}[/tex]
[tex]Rate = \frac{-260}{5}[/tex]
[tex]Rate = -52[/tex]