Find the exact value of sin(x + y), given sin(x) = -1/2 , cos(y) = -1/3, x is an angle in quadrant III, and y is an angle in quadrant II.

StartFraction 2 minus StartRoot 5 EndRoot Over 6 EndFraction

StartFraction 1 minus 2 StartRoot 6 EndRoot Over 6 EndFraction

StartFraction 6 minus StartRoot 5 EndRoot Over 6 EndFraction

StartFraction StartRoot 3 EndRoot minus StartRoot 5 EndRoot Over 6 EndFraction

Respuesta :

Given:

[tex]\sin (x)=-\dfrac{1}{2}[/tex]

[tex]\cos (y)=-\dfrac{1}{3}[/tex]

x is an angle in quadrant III, and y is an angle in quadrant II.

To find:

The value of sin(x+y).

Solution:

We know that, only sin and cosec are positive in II quadrant. Only tan and cot are positive in III quadrant.

x is an angle in quadrant III,

[tex]\cos x=-\sqrt{1-\sin^2 x}[/tex]

[tex]\cos x=-\sqrt{1-(-\dfrac{1}{2})^2}[/tex]

[tex]\cos x=-\sqrt{1-\dfrac{1}{4}}[/tex]

[tex]\cos x=-\sqrt{\dfrac{4-1}{4}}[/tex]

[tex]\cos x=-\dfrac{\sqrt{3}}{2}[/tex]

y is an angle in quadrant II.

[tex]\sin y=\sqrt{1-\cos^2x}[/tex]

[tex]\sin y=\sqrt{1-(-\dfrac{1}{3})^2}[/tex]

[tex]\sin y=\sqrt{1-\dfrac{1}{9}}[/tex]

[tex]\sin y=\sqrt{\dfrac{9-1}{9}}[/tex]

[tex]\sin y=\sqrt{\dfrac{8}{9}}[/tex]

[tex]\sin y=\dfrac{2\sqrt{2}}{3}[/tex]

Now,

[tex]\sin(x+y)=\sin x\cos y+\cos x\sin y[/tex]

[tex]\sin(x+y)=(-\dfrac{1}{2})\times (-\dfrac{1}{3})+(-\dfrac{\sqrt{3}}{2})\times (\dfrac{2\sqrt{2}}{3})[/tex]

[tex]\sin(x+y)=\dfrac{1}{6}-\dfrac{2\sqrt{6}}{6}[/tex]

[tex]\sin(x+y)=\dfrac{1-2\sqrt{6}}{6}[/tex]

Therefore, the correct option is B.

Answer:

Choice B

Step-by-step explanation:

Ver imagen wasayalvi05