Respuesta :
Answer:
The maximum possible volume = 332.685 cubic inches
Step-by-step explanation:
From the information given:
Let the height be = x
The length be = 24 - 2x
The width be = 12 - 2x
Then V = x (24 -2x) ( 12 - 2x)
V = x ( 288 -48x - 24x +4x²)
V = x(288 - 72x + 4x²)
V = 288x - 72x² + 4x³
[tex]\dfrac{dV}{dx}= (3x^2 - 36x+ 72)[/tex]
[tex]\implies x^2 - 12x + 24 = 0[/tex]
[tex]=\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}[/tex]
[tex]=\dfrac{-(-12) \pm \sqrt{(-12)^2 - 4(1)(24)}}{2(1)}[/tex]
[tex]=\dfrac{12 \pm \sqrt{144 - 96}}{2}[/tex]
[tex]=\dfrac{12 \pm \sqrt{48}}{2}[/tex]
where;
[tex]x \ne \dfrac{12 + \sqrt{48}}{2}[/tex]
∴ [tex]x= \dfrac{12 - \sqrt{48}}{2}[/tex]
x = 2.536 ( since the length cannot be negative)
So, the length x = 24 - 2(2.535) = 18.93
The width = 12 - 2(2.535) = 6.93
heigth = 2.536
∴
V = 18.93 × 6.93 × 2.536
V = 332.685 cubic inches
A box is made from a plastic sheet by removing square from each corner, maximum volume of this box will be 332.55 cubic inches.
Volume of a cuboid:
- Volume of a cuboid or rectangular box is given by the expression,
Volume = Length × Width × Height
Given in the question,
- Plastic sheet with length = 12 inches
- Width of the sheet = 24 inches
- A square has been removed from each corner to fold the box.
Let the measure of each side of a square removed = x inches
Therefore, length of the box = (12 - 2x) inches
Width of the box = (24 - 2x) inches
Height of the box = x inches
Volume of the box (V) = (12 - 2x) × (24 - 2x) × (x)
V = 4x³ - 72x² + 288x
To find the maximum volume of the box differentiate the expression with respect to 'x' and equate it to zero.
V' = 12x² - 144x + 288
For V' = 0,
12x² - 144x + 288 = 0
x² - 12x + 24 = 0
[tex]x=\frac{12\pm\sqrt{(12)^2-4(1)(24)} }{2(1)}[/tex]
[tex]x=(6\pm2\sqrt{3})[/tex]
[tex]x=9.46,2.54[/tex]
For x = 9.46,
Volume of the box = 4(9.46)³- 72(9.46)² + 288
= -2769.03 cubic inches
For x = 2.54,
Volume of the box = 4(2.54)³- 72(2.54)² + 288
= 332.55 cubic inches
Therefore, maximum volume of the box will be 332.55 cubic inches.
Learn more about the volume of a cuboid here,
https://brainly.com/question/25395659?referrer=searchResults
