Respuesta :

Answer:

The equation of altitude AD drawn from A to BC will be:

[tex]y=x+3[/tex]

Step-by-step explanation:

Let m₁ and m₂ be the slope of line AD and BC respectively.

Now, AD⊥BC

​∴ m₁ × m₂ = -1

be the slope of line AD and BC respectively.

⇒ m₁ = -1/m₂    → (A)

Finding the slope of BC using points

B(2, 2)

C(6, - 2)

[tex]\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(2,\:2\right),\:\left(x_2,\:y_2\right)=\left(6,\:-2\right)[/tex]

[tex]m_{2} =\frac{-2-2}{6-2}[/tex]

[tex]m_{2} =-1[/tex]

On substituting the value of m₂ in equation (A)

m₁ = -1/m₂

    = -1/(-1)

    = 1

We know that the point-slope form of the line equation is

[tex]y-y_1=m\left(x-x_1\right)[/tex]

∴ Equation of altitude AD passing through A(-2, 1) with slope 1 will be

[tex]y-1=1\cdot \left(x-\left(-2\right)\right)[/tex]

[tex]y-1=x+2[/tex]

[tex]y=x+3[/tex]

Therefore, the equation of altitude AD drawn from A to BC will be:

[tex]y=x+3[/tex]