What is the solution to the system: ax+y=18 and 4ax-y=12? Use elimination. Put the answer as an ordered pair. Show work on the next question. You have 3 unknowns and only 2 equations so you can have the variable "a" in your solution

Respuesta :

Answer:

Ax=6

Y=12

Therefore a=6, x=1, y=12

Answer:

{([tex]\frac{6}{a}[/tex],12)}

Step-by-step explanation:

[tex]\left \{ {{ax+y=18} \atop {4ax-y=12}} \right.[/tex]

[tex]5ax = 30[/tex]

[tex]x = \frac{6}{a}[/tex]

[tex]a(\frac{6}{a}) + y = 18[/tex]

6 + y =18→y=12

[tex]4a(\frac{6}{a}) - 12 = 12[/tex]

6 - 12 = 12 → 12 = 12 true  x=[tex]\frac{6}{a}[/tex]  y=12