Respuesta :

Answer:

[tex]\frac{\sqrt{5}}{\sqrt{8}}=\frac{1}{4}\sqrt{10[/tex]

Step-by-step explanation:

Given

[tex]\frac{\sqrt{5}}{\sqrt{8}}[/tex]

Required

Express in its simplest form

To do this, we simply radicalize the given expression by multiplying the expression by the denominator over the denominator.

In other words:

[tex]\frac{\sqrt{5}}{\sqrt{8}} * \frac{\sqrt{8}}{\sqrt{8}}[/tex]

[tex]\frac{\sqrt{5}*\sqrt{8}}{\sqrt{8}*\sqrt{8}}[/tex]

[tex]\frac{\sqrt{40}}{\sqrt{64}}[/tex]

Take positive square root

[tex]\frac{\sqrt{40}}{8}[/tex]

Express 40 as 4 * 10

[tex]\frac{\sqrt{4*10}}{8}[/tex]

[tex]\frac{\sqrt{4}*\sqrt{10}}{8}[/tex]

[tex]\frac{2*\sqrt{10}}{8}[/tex]

Simplify:

[tex]\frac{1*\sqrt{10}}{4}[/tex]

[tex]=\frac{1}{4}\sqrt{10[/tex]

Hence:

[tex]\frac{\sqrt{5}}{\sqrt{8}}=\frac{1}{4}\sqrt{10[/tex]