Find the exact rotation in revolutions per minute with the angular speed below:

Answer:
The exact rotation in revolutions per minute is 1.125 revolutions per minute
[tex]\omega = 1.125 \ \dfrac{Revolution}{minute}[/tex]
Step-by-step explanation:
The given angular velocity is expressed as follows;
[tex]\omega = 135 \cdot \pi \ \dfrac{rad}{h}[/tex]
Therefore, we have;
[tex]\omega = \dfrac{135 }{60} \cdot \pi \ \dfrac{rad}{minute} = \dfrac{9}{4} \cdot \pi \ \dfrac{rad}{minute} = 2.25 \cdot \pi \ \dfrac{rad}{minute}[/tex]
One (1) revolution = 2·π radian
Therefore;
π radian = 1/2 revolution
2.25·π radian = 2.25 × 1/2 revolution = 1.125 revolution
Which gives;
[tex]2.25 \cdot \pi \cdot \dfrac{rad}{minute} = 1.125 \ \dfrac{Revolution}{minute}[/tex]
The exact rotations in revolutions per minute is 1.125 revolutions per minute.