Respuesta :

Answer:

The exact rotation in revolutions per minute is 1.125 revolutions per minute

[tex]\omega = 1.125 \ \dfrac{Revolution}{minute}[/tex]

Step-by-step explanation:

The given angular velocity is expressed as follows;

[tex]\omega = 135 \cdot \pi \ \dfrac{rad}{h}[/tex]

Therefore, we have;

[tex]\omega = \dfrac{135 }{60} \cdot \pi \ \dfrac{rad}{minute} = \dfrac{9}{4} \cdot \pi \ \dfrac{rad}{minute} = 2.25 \cdot \pi \ \dfrac{rad}{minute}[/tex]

One (1) revolution = 2·π radian

Therefore;

π radian =  1/2 revolution

2.25·π radian = 2.25 × 1/2 revolution = 1.125 revolution

Which gives;

[tex]2.25 \cdot \pi \cdot \dfrac{rad}{minute} = 1.125 \ \dfrac{Revolution}{minute}[/tex]

The exact rotations in revolutions per minute is 1.125 revolutions per minute.