A lighthouse is located on an island 7 miles from the closest point on a straight shoreline. If the lighthouse light rotates clockwise at a constant rate of 8 revolutions per minute, how fast does the beam of light move across the shore when it is 3 miles from the point on the shore closest to the island

Respuesta :

Answer:

[tex]\dfrac{800 \pi}{7} \ miles/min[/tex]

Step-by-step explanation:

From the given information:

We learned that the light rotates 8 revolutions per minute.

Therefore;

[tex]\dfrac{d \theta}{d t}= \dfrac{8 * 2 \pi}{1 \ min}[/tex]

[tex]\dfrac{d \theta}{d t}= 16\pi \ rads/min\\[/tex]

From the trigonometry formula, the tanget of the lighthouse in relation to the  closest point on a straight shoreline can be expressed as:

[tex]tan \theta = \dfrac{x}{7}[/tex]

By differentiation with respect to t; we have:

[tex]\dfrac{d(tan \theta)}{dt} = \dfrac{1}{7} * \dfrac{dx}{dt}[/tex]

[tex]\dfrac{d(tan \theta)}{d \theta}* \dfrac{d \theta}{dt} = \dfrac{1}{7} * \dfrac{dx}{dt}[/tex]

By applying the chain rule:

[tex]sec^2 * \dfrac{d \theta }{d t} = \dfrac{1}{7} * \dfrac{dx}{dt}[/tex]

[tex](1 + tan ^2 \theta) \dfrac{d \theta }{dt} = \dfrac{1}{7} * \dfrac{dx}{dt}[/tex]

When x = 3 ; we have [tex]tan \theta = \dfrac{1}{7}[/tex]

[tex]\bigg (1 + \dfrac{1}{49} \bigg ) \dfrac{d \theta }{dt} = \dfrac{1}{7} * \dfrac{dx}{dt}[/tex]

Also;

[tex]\dfrac{d \theta}{d t}= 16\pi \ rads/min\\[/tex]

[tex]\bigg (1 + \dfrac{1}{49} \bigg ) 16 \pi = \dfrac{1}{7} * \dfrac{dx}{dt}[/tex]

[tex]\bigg ( \dfrac{50}{7} \bigg ) 16 \pi = \dfrac{dx}{dt}[/tex]

[tex]\dfrac{dx}{dt} = \dfrac{800 \pi}{7} \ miles/min[/tex]