Respuesta :

Answer:

1

Step-by-step explanation:

Given the expression [tex]\left[\left(\frac{2}{5}\right)^{12} \left(\frac{3}{16}\right)^{-8}\right] \cdot \left[\left(\frac{2}{5}\right)^{12} \left(\frac{3}{16}\right)^{-8}\right]^{-1}[/tex]

According to indices:

[tex]a^{-1} = \frac{1}{a}[/tex]

Applying this to the question:

[tex]\left[\left(\frac{2}{5}\right)^{12} \left(\frac{3}{16}\right)^{-8}\right]^{-1} = \frac{1}\left\left(\frac{2}{5}\right)^{12} \left(\frac{3}{16}\right)^{-8}\right}[/tex]

Hence:

[tex]\left[\left(\frac{2}{5}\right)^{12} \left(\frac{3}{16}\right)^{-8}\right] \cdot \left[\left(\frac{2}{5}\right)^{12} \left(\frac{3}{16}\right)^{-8}\right]^{-1} = \frac{\left[\left(\frac{2}{5}\right)^{12} \left(\frac{3}{16}\right)^{-8}\right]}{\left[\left(\frac{2}{5}\right)^{12} \left(\frac{3}{16}\right)^{-8}\right]} \\\\\left[\left(\frac{2}{5}\right)^{12} \left(\frac{3}{16}\right)^{-8}\right] \cdot \left[\left(\frac{2}{5}\right)^{12} \left(\frac{3}{16}\right)^{-8}\right]^{-1} = 1[/tex]

Hence the right answer is 1

Answer:

= 1

Step-by-step explanation: