The equation p = 3.25b can be used to find the price, p, in dollars, of b pounds of blueberries at a particular supermarket.  Each of the tables gives the prices of various pounds of blueberries at a different supermarket.  Which of these tables represents blueberries that are more expensive than those represented by the equation?  Select all that apply.

The equation p 325b can be used to find the price p in dollars of b pounds of blueberries at a particular supermarket Each of the tables gives the prices of var class=

Respuesta :

Answer:

Table C, Table D, Table E

Step-by-step explanation:

See attachment for tables

Given

[tex]p = 3.25b[/tex]

Required

Which of the tables is more expensive than the given function

To answer this question, we simply determine the equation of each table and then compare the equation with [tex]p = 3.25b[/tex]

Table A:

Consider two corresponding points in the table, we have:

[tex](b_1,p_1) = (1,2.75)[/tex]

[tex](b_2,p_2) = (4,11)[/tex]

Determine the slope

[tex]m = \frac{p_2 - p_1}{b_2 - b_1}[/tex]

[tex]m = \frac{11 - 2.75}{4 - 1}[/tex]

[tex]m = \frac{8.25}{3}[/tex]

[tex]m = 2.75[/tex]

The equation is determined as follows:

[tex]p - p_1 = m(b-b_1)[/tex]

[tex]p - 2.75 = 2.75(b-1)[/tex]

[tex]p - 2.75 = 2.75b-2.75[/tex]

[tex]p = 2.75b[/tex]

Comparing this equation to [tex]p = 3.25b[/tex], we have that:

[tex]2.75 < 3.25[/tex]

Hence:

This equation is less expensive than [tex]p = 3.25b[/tex]

Table B:

Consider two corresponding points in the table, we have:

[tex](b_1,p_1) = (1.5,3.75)[/tex]

[tex](b_2,p_2) = (6,15)[/tex]

Determine the slope

[tex]m = \frac{p_2 - p_1}{b_2 - b_1}[/tex]

[tex]m = \frac{15 - 3.75}{6 - 1.5}[/tex]

[tex]m = \frac{11.25}{4.5}[/tex]

[tex]m = 2.5[/tex]

The equation is determined as follows:

[tex]p - p_1 = m(b-b_1)[/tex]

[tex]p - 3.75 = 2.5(b-1.5)[/tex]

[tex]p - 3.75 = 2.5b- 3.75[/tex]

[tex]p = 2.5b[/tex]

Comparing this equation to [tex]p = 3.25b[/tex], we have that:

[tex]2.5 < 3.25[/tex]

Hence:

This equation is also less expensive than [tex]p = 3.25b[/tex]

Table C:

Consider two corresponding points in the table, we have:

[tex](b_1,p_1) = (2,7)[/tex]

[tex](b_2,p_2) = (4,14)[/tex]

Determine the slope

[tex]m = \frac{p_2 - p_1}{b_2 - b_1}[/tex]

[tex]m = \frac{14 - 7}{4 - 2}[/tex]

[tex]m = \frac{7}{2}[/tex]

[tex]m = 3.5[/tex]

The equation is determined as follows:

[tex]p - p_1 = m(b-b_1)[/tex]

[tex]p - 7 = 3.5(b - 2)[/tex]

[tex]p - 7 = 3.5b - 7[/tex]

[tex]p = 3.5b[/tex]

Comparing this equation to [tex]p = 3.25b[/tex], we have that:

[tex]3.5 > 3.25[/tex]

Hence:

This equation is more expensive than [tex]p = 3.25b[/tex]

Table D:

Consider two corresponding points in the table, we have:

[tex](b_1,p_1) = (2.5,10)[/tex]

[tex](b_2,p_2) = (5,20)[/tex]

Determine the slope

[tex]m = \frac{p_2 - p_1}{b_2 - b_1}[/tex]

[tex]m = \frac{20 - 10}{5 - 2.5}[/tex]

[tex]m = \frac{10}{2.5}[/tex]

[tex]m = 4[/tex]

The equation is determined as follows:

[tex]p - p_1 = m(b-b_1)[/tex]

[tex]p - 10 = 4(b - 2.5)[/tex]

[tex]p - 10 = 4b - 10[/tex]

[tex]p = 4b[/tex]

Comparing this equation to [tex]p = 3.25b[/tex], we have that:

[tex]4 > 3.25[/tex]

Hence:

This equation is more expensive than [tex]p = 3.25b[/tex]

Table E:

Consider two corresponding points in the table, we have:

[tex](b_1,p_1) = (6, 22.5)[/tex]

[tex](b_2,p_2) = (12,45)[/tex]

Determine the slope

[tex]m = \frac{p_2 - p_1}{b_2 - b_1}[/tex]

[tex]m = \frac{45 - 22.5}{12 - 6}[/tex]

[tex]m = \frac{22.5}{6}[/tex]

[tex]m = 3.75[/tex]

The equation is determined as follows:

[tex]p - p_1 = m(b-b_1)[/tex]

[tex]p - 22.5 = 3.75(b - 6)[/tex]

[tex]p - 22.5 = 3.75b - 22.5[/tex]

[tex]p = 3.75b[/tex]

Comparing this equation to [tex]p = 3.25b[/tex], we have that:

[tex]3.75>3.25[/tex]

Hence:

This equation is more expensive than [tex]p = 3.25b[/tex]

Table F:

Consider two corresponding points in the table, we have:

[tex](b_1,p_1) = (7, 21)[/tex]

[tex](b_2,p_2) = (14,42)[/tex]

Determine the slope

[tex]m = \frac{p_2 - p_1}{b_2 - b_1}[/tex]

[tex]m = \frac{42 - 21}{14 - 7}[/tex]

[tex]m = \frac{21}{7}[/tex]

[tex]m = 3[/tex]

The equation is determined as follows:

[tex]p - p_1 = m(b-b_1)[/tex]

[tex]p -21 =3(b -7)[/tex]

[tex]p -21 =3b -21[/tex]

[tex]p = 3b[/tex]

Comparing this equation to [tex]p = 3.25b[/tex], we have that:

[tex]3 < 3.25[/tex]

Hence:

This equation is less expensive than [tex]p = 3.25b[/tex]

Ver imagen MrRoyal