Respuesta :
Answer: {-1, 0}
Explanation: Since y = -7x - 7, we can replace the y in our first equation with
a -7x - 7 and our first equation now reads 4x + 4(-7x - 7) = -4.
To solve this equation, first distribute the 4 through the parenthses.
So we have 4x - 28x - 28 = -4.
Now simplify the left side to get -24x - 28 = -4.
Adding 28 to both sides, we have -24x = 24.
Dividing both sides by -24, we find that x = -1.
To find y, plug a -1 back into either equation.
So we have y = -7(-1) - 7 or y = 0.
Our final answer is {-1, 0}.
Answer:
x= -1,
y=0
Step-by-step explanation:
[tex]\begin{bmatrix}4x+4y=-4\\ y=-7x-7\end{bmatrix}\\\\\mathrm{Subsititute\:}y=-7x-7\\\\\begin{bmatrix}4x+4\left(-7x-7\right)=-4\end{bmatrix}\\\\Simplify\\\\\begin{bmatrix}-24x-28=-4\end{bmatrix}\\\\Isolate\:x \:for \:-24x-28=-4\:\::x =-1\\\\\mathrm{For\:}y=-7x-7\\\\\mathrm{Subsititute\:}x=-1\\\\y=-7\left(-1\right)-7\\\\-7\left(-1\right)-7 =0\\\\y=0\\\\\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}\\x=-1,\:y=0[/tex]