Respuesta :

Answer:

The expression NOT equivalent to a³b³ is [tex]a^{4}b^{4}-ab[/tex]  ⇒ B

Step-by-step explanation:

Let us revise some rules of exponents

[tex]a^{m}*a^{n}=a^{m+n}[/tex]

[tex]\frac{a^{m}}{a^{n}}=a^{m-n}[/tex]

[tex](a^{m})^{n}=a^{mn}[/tex]

let us solve the question

∵ (a²b)(b²a) = a² × a × b × b²

∵ a² × a × b × b² = [tex]a^{2+1}[/tex] ×  [tex]b^{2+1}[/tex]

∴ a² × a × b × b² = a³ × b³

(a²b)(b²a) = a³b³

∵ [tex]a^{4}b^{4}-ab[/tex] have mo multiplication or division operations

∴ We can not add the powers or subtract them

[tex]a^{4}b^{4}-ab[/tex]  ≠ a³b³

The expression NOT equivalent to a³b³ is [tex]a^{4}b^{4}-ab[/tex]