let (-6,5) be a point on the terminal side of theta. find the exact values of sintheta, costheta, and sintheta

Respuesta :

Given:

The point is (-6,5).

It is on the terminal side of theta.

To find:

The values of [tex]\sin\theta[/tex] and [tex]\cos \theta[/tex].

Solution:

In the point (-6,5),

x-coordinate : x=-6

y-coordinate : y=5

So, [tex]r=\sqrt{x^2+y^2}[/tex]

[tex]r=\sqrt{(-6)^2+(5)^2}[/tex]

[tex]r=\sqrt{36+25}[/tex]

[tex]r=\sqrt{61}[/tex]

Now,

[tex]\sin \theta=\dfrac{y}{r}[/tex]

[tex]\sin \theta=\dfrac{5}{\sqrt{61}}[/tex]

[tex]\cos \theta=\dfrac{x}{r}[/tex]

[tex]\cos \theta=\dfrac{-6}{\sqrt{61}}[/tex]

Therefore, the required values are [tex]\sin \theta=\dfrac{5}{\sqrt{61}}[/tex] and [tex]\cos \theta=-\dfrac{6}{\sqrt{61}}[/tex].