Respuesta :

Step-by-step explanation:

1 result(s) found

x  

2

−x−3

Step by Step Solution:

More Icon

STEP

1

:

Equation at the end of step 1

 

STEP

2

:

           x3 + 3x2 - 7x - 12

Simplify   ——————————————————

                 x + 4        

Checking for a perfect cube :

2.1    x3 + 3x2 - 7x - 12  is not a perfect cube

Trying to factor by pulling out :

2.2      Factoring:  x3 + 3x2 - 7x - 12  

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -7x - 12  

Group 2:  x3 + 3x2  

Pull out from each group separately :

Group 1:   (7x + 12) • (-1)

Group 2:   (x + 3) • (x2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

2.3    Find roots (zeroes) of :       F(x) = x3 + 3x2 - 7x - 12

Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -12.

The factor(s) are:

of the Leading Coefficient :  1

of the Trailing Constant :  1 ,2 ,3 ,4 ,6 ,12

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        -3.00      

     -2       1        -2.00        6.00      

     -3       1        -3.00        9.00      

     -4       1        -4.00        0.00      x + 4  

     -6       1        -6.00        -78.00      

     -12       1       -12.00       -1224.00      

     1       1        1.00        -15.00      

     2       1        2.00        -6.00      

     3       1        3.00        21.00      

     4       1        4.00        72.00      

     6       1        6.00        270.00      

     12       1        12.00        2064.00      

The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that

  x3 + 3x2 - 7x - 12  

can be divided with  x + 4  

Polynomial Long Division :

2.4    Polynomial Long Division

Dividing :  x3 + 3x2 - 7x - 12  

                             ("Dividend")

By         :    x + 4    ("Divisor")

dividend     x3  +  3x2  -  7x  -  12  

- divisor  * x2     x3  +  4x2          

remainder      -  x2  -  7x  -  12  

- divisor  * -x1      -  x2  -  4x      

remainder          -  3x  -  12  

- divisor  * -3x0          -  3x  -  12  

remainder                0

Quotient :  x2-x-3  Remainder:  0  

Trying to factor by splitting the middle term

2.5     Factoring  x2-x-3  

The first term is,  x2  its coefficient is  1 .

The middle term is,  -x  its coefficient is  -1 .

The last term, "the constant", is  -3  

Step-1 : Multiply the coefficient of the first term by the constant   1 • -3 = -3  

Step-2 : Find two factors of  -3  whose sum equals the coefficient of the middle term, which is   -1 .

     -3    +    1    =    -2  

     -1    +    3    =    2  

Observation : No two such factors can be found !!

Conclusion : Trinomial can not be factored

Canceling Out :

2.6    Cancel out  (x+4)  which appears on both sides of the fraction line.

Final result :

 x2 - x - 3

Terms and topics

More Icon

Polynomial root calculator

Polynomial long division

Related links

More Icon

Root Finder -- Polynomials Calculator

How to factor five term polynomial - Yahoo Answers

Long Polynomial Division

Polynomial long division - Wikipedia

Polynomial Long Division

Polynomials - Long Division