Respuesta :

Complete Question

Find the range for the population mean value with 95% and 65% confidence intervals for each set of data.

 [tex]\= x_1= 3.611 \ cm[/tex], [tex]\sigma_1=0.02\ c m[/tex], [tex]n_1=24[/tex],

[tex]\=x_2=3.632 \ cm[/tex], [tex]\sigma_2=0.06 \ cm[/tex], [tex]n_2= 17[/tex]

Answer:

The range for the population mean value with 95% confidence intervals for the first set of data  is

    [tex]2.602 <\mu <  2.619[/tex]

The range for the population mean value with 95% confidence intervals for the second  set of data  is

    [tex]2.601 <\mu <  2.661[/tex]

The range for the population mean value with 65% confidence intervals for the first   set of data  is

    [tex]2.605 <\mu<  2.617[/tex]  

The range for the population mean value with 65% confidence intervals for the second set of data  is

    [tex]2.611 <\mu <  2.6526[/tex]  

Step-by-step explanation:

Generally the range for the population mean value with 95% confidence intervals for the first set of data  is mathematically evaluated as follows

Generally the degree of freedom is mathematically evaluated as

     [tex]df = n_1 -1[/tex]

=>  [tex]df = 24 -1[/tex]

=>  [tex]df = 23[/tex]

From the question we are told the confidence level is  95% , hence the level of significance is    

      [tex]\alpha = (100 - 95 ) \%[/tex]

=>   [tex]\alpha = 0.05[/tex]

Generally from the t distribution table the critical value  of    at  is  

   [tex]t_{\frac{\alpha }{2}  , df = 23} =  2.068[/tex]

Generally the margin of error is mathematically represented as  

      [tex]E_1 = t_{\frac{\alpha }{2}  , df = 23}  *  \frac{\sigma_1 }{\sqrt{n_1} }[/tex]

=>   [tex]E_1 = 2.068  *  \frac{0.02}{\sqrt{24} }[/tex]  

=>   [tex]E_1 =  0.00844 [/tex]

Generally 95% confidence interval is mathematically represented as  

      [tex]\= x_1 -E_1 <  \mu <  \=x_1  +E_1[/tex]

       [tex]2.611  - 0.00844 < \mu < 2.611  + 0.00844[/tex]

=>   [tex]2.602 <\mu <  2.619[/tex]

Generally the range for the population mean value with 95% confidence intervals for the second set of data  is mathematically evaluated as follows

Generally the degree of freedom is mathematically evaluated as

     [tex]df_2 = n_2 -1[/tex]

=>  [tex]df_2 = 17 -1[/tex]

=>  [tex]df_2 = 16[/tex]

From the question we are told the confidence level is  95% , hence the level of significance is    

      [tex]\alpha = (100 - 95 ) \%[/tex]

=>   [tex]\alpha = 0.05[/tex]

Generally from the t distribution table the critical value  of    at  is  

   [tex]t_{\frac{\alpha }{2}  , df = 16} =  2.12 [/tex]

Generally the margin of error is mathematically represented as  

      [tex]E_1 = t_{\frac{\alpha }{2}  , df = 23}  *  \frac{\sigma_2 }{\sqrt{n_2} }[/tex]

=>   [tex]E_2 =2.12  *  \frac{0.06}{\sqrt{17} }[/tex]  

=>   [tex]E_2 =  0.03085  [/tex]

Generally 95% confidence interval is mathematically represented as  

      [tex]\= x_2 -E_2 <  \mu <  \=x_2  +E_2[/tex]

       [tex]2.632  - 0.03085<\mu < 2.632  + 0.03085[/tex]

=>   [tex]2.601 <\mu <  2.661[/tex]

Generally the range for the population mean value with 65% confidence intervals for the first set of data  is mathematically evaluated as follows

Generally the degree of freedom is mathematically evaluated as

     [tex]df = n_1 -1[/tex]

=>  [tex]df = 24 -1[/tex]

=>  [tex]df = 23[/tex]

From the question we are told the confidence level is  95% , hence the level of significance is    

      [tex]\alpha = (100 - 65 ) \%[/tex]

=>   [tex]\alpha = 0.35[/tex]

Generally from the t distribution table the critical value  of    at  is  

   [tex]t_{\frac{\alpha }{2}  , df = 23} = 1.3995 [/tex]

Generally the margin of error is mathematically represented as  

      [tex]E_3 = t_{\frac{\alpha }{2}  , df = 23}  *  \frac{\sigma_1 }{\sqrt{n_1} }[/tex]

=>   [tex]E_3 = 1.3995 *  \frac{0.02}{\sqrt{24} }[/tex]  

=>   [tex]E_3 =  0.00571 [/tex]

Generally 95% confidence interval is mathematically represented as  

      [tex]\= x_1 -E_3 <  \mu <  \=x_1  +E_3 [/tex]

       [tex]2.611  - 0.00571 <\mu <  2.611  + 0.00571[/tex]

=>   [tex]2.605 <\mu<  2.617[/tex]  

Generally the range for the population mean value with 65% confidence intervals for the second set of data  is mathematically evaluated as follows

Generally the degree of freedom is mathematically evaluated as

     [tex]df_2 = n_2 -1[/tex]

=>  [tex]df_2 = 17 -1[/tex]

=>  [tex]df_2 = 16[/tex]

From the question we are told the confidence level is  95% , hence the level of significance is    

      [tex]\alpha = (100 - 65 ) \%[/tex]

=>   [tex]\alpha = 0.35[/tex]

Generally from the t distribution table the critical value  of    at  is  

   [tex]t_{\frac{\alpha }{2}  , df = 16} =  1.41930 [/tex]

Generally the margin of error is mathematically represented as  

      [tex]E_4 = t_{\frac{\alpha }{2}  , df = 23}  *  \frac{\sigma_2 }{\sqrt{n_2} }[/tex]

=>   [tex]E_4 =1.41930 *  \frac{0.06}{\sqrt{17} }[/tex]  

=>   [tex]E_4 =  0.020653  [/tex]

Generally 95% confidence interval is mathematically represented as  

      [tex]\= x_2 -E_4 <  \mu <  \=x_2  +E_4[/tex]

       [tex]2.632  - 0.020653<\mu < 2.632  + 0.020653[/tex]

=>   [tex]2.611 <\mu <  2.6526[/tex]