A company manufactures and sells x VCRs per month. If the cost and revenue equations are C(x) = 200 + 2x, R(x) = 20x − (x^2/50) , use differentials to estimate the change, ∆P, in profit when the production is increased from 100 to 101.

Respuesta :

Answer:

ΔP  = 14

Step-by-step explanation:

Given

[tex]C(x) = 200 + 2x[/tex]

[tex]R(x) = 20x - \frac{x^2}{50}[/tex]

Required

Determine the change in profit

First, we need to determine the profit

[tex]P(x) = R(x) - C(x)[/tex]

[tex]P(x) = 20x - \frac{x^2}{50} - 200 - 2x[/tex]

Collect Like Terms

[tex]P(x) = - \frac{x^2}{50} + 20x - 2x- 200[/tex]

[tex]P(x) = - \frac{x^2}{50} + 18x- 200[/tex]

Differentiate wrt x

[tex]P'(x) = -\frac{x}{25} + 18[/tex]

When Profit increases from 100 to 101, the change becomes

ΔP  [tex]= -\frac{x}{25} + 18[/tex]Δx

Δx[tex]= (x_2 - x_1)[/tex]

Where

[tex]x_2 = 101[/tex]

[tex]x_1 = x = 100[/tex]

So, the expression: ΔP  [tex]= -\frac{x}{25} + 18[/tex]Δx becomes

ΔP  [tex]= (-\frac{x}{25} + 18)(x_2 - x_1)[/tex]

ΔP  [tex]= (-\frac{100}{25} + 18)(101 - 100)[/tex]

ΔP  [tex]= (-4+ 18)(1)[/tex]

ΔP  [tex]= (14)(1)[/tex]

ΔP  = 14