Answer:
ΔP = 14
Step-by-step explanation:
Given
[tex]C(x) = 200 + 2x[/tex]
[tex]R(x) = 20x - \frac{x^2}{50}[/tex]
Required
Determine the change in profit
First, we need to determine the profit
[tex]P(x) = R(x) - C(x)[/tex]
[tex]P(x) = 20x - \frac{x^2}{50} - 200 - 2x[/tex]
Collect Like Terms
[tex]P(x) = - \frac{x^2}{50} + 20x - 2x- 200[/tex]
[tex]P(x) = - \frac{x^2}{50} + 18x- 200[/tex]
Differentiate wrt x
[tex]P'(x) = -\frac{x}{25} + 18[/tex]
When Profit increases from 100 to 101, the change becomes
ΔP [tex]= -\frac{x}{25} + 18[/tex]Δx
Δx[tex]= (x_2 - x_1)[/tex]
Where
[tex]x_2 = 101[/tex]
[tex]x_1 = x = 100[/tex]
So, the expression: ΔP [tex]= -\frac{x}{25} + 18[/tex]Δx becomes
ΔP [tex]= (-\frac{x}{25} + 18)(x_2 - x_1)[/tex]
ΔP [tex]= (-\frac{100}{25} + 18)(101 - 100)[/tex]
ΔP [tex]= (-4+ 18)(1)[/tex]
ΔP [tex]= (14)(1)[/tex]
ΔP = 14