Respuesta :

Answer:

option C, x=1

Step-by-step explanation:

[tex]2^{9x-3} = 8^{3-x}[/tex]

[tex]2^{9x-3} = (2^3)^{3-x}[/tex]

[tex]2^{9x-3} = 2^{9-3x}[/tex]

cut 2 from LHS and RHS  you will get,

9x-3 = 9-3x

9x + 3x = 9 + 3

12x = 12

x = 12/12

x = 1

therefore, option C is the correct option

hope it helps you!

Answer:

[tex] \huge{ \boxed{ \bold{ \tt{x = 1}}}}[/tex]

Option C is correct.

Step-by-step explanation:

[tex] \text{First ,\: let's \: know \: about \: exponential \: equation} : [/tex]

Exponential Equation

An equation in which variables appears as an exponent of a base is known as exponential equation. The following axioms are useful while solving the exponential equations :

  • If [tex] \sf{ {a}^{x} = {a}^{b} }[/tex] , then x = b
  • If aˣ = 1 , then aˣ = a⁰ and x = 0

Thus , while solving an exponential equation, we should simplify the equation till the equation is obtained in the form [tex] \sf{ {a}^{x} = {a}^{b}} [/tex] or aˣ = 1 .

Now, let's start to solve :

[tex] \sf{ {2}^{(9x - 3)} = {8}^{( 3 - x)}} [/tex]

➸ [tex] \sf{ {2}^{9x - 3} = {2}^{3(3 - x)} }[/tex]

➸ [tex] \sf{ {2}^{9x - 3} = {2}^{9 - 3x}} [/tex]

➸ [tex] \sf{ \cancel{2} ^{ \: 9x - 3} = \cancel{2} ^{ \: 9 - 3x} }[/tex]

➸ [tex] \sf{9x - 3 = 9 - 3x}[/tex]

➸ [tex] \sf{9x + 3x = 9 + 3}[/tex]

➸ [tex] \sf{12x = 12}[/tex]

➸ [tex] \sf{ \frac{12x}{12} = \frac{12}{12}} [/tex]

➸ [tex] \boxed{ \sf{x = 1}}[/tex]

The value of x is 1 .

Hope I helped!

Best regards! :D

~[tex] \text{TheAnimeGirl}[/tex]