contestada

An angle measures 4º more than the measure of its supplementary angle. What is the
measure of each angle?

Respuesta :

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

Suppose ;

[tex]the \: angle \: = \: x[/tex]

Thus the supplementary of x is :

[tex]180 - x[/tex]

_________________________________

x angle measures 4° more than its supplementary ;

So :

[tex]x - (180 - x) = 4[/tex]

[tex]x - 180 + x = 4[/tex]

[tex]2x - 180 = 4[/tex]

Add sides 180

[tex]2x - 180 + 180 = 4 + 180[/tex]

[tex]2x = 184[/tex]

Divided sides by 2

[tex] \frac{2}{2}x = \frac{184}{2} \\ [/tex]

[tex]x = 92[/tex]

Thus the angles measures

are : 92° and 88°

DONE....

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️