Three hundred feet of fencing is available for a rectangular pasture alongside a river, the river serving as one side of the rectangle (so only three sides require fencing). Find the dimensions yielding the greatest area. (Enter your answers as a comma-separated list.)

Respuesta :

Answer:

(150 feet,75 feet)

Step-by-step explanation:

Let

Length of rectangle pasture,l=y

Breadth of rectangle pasture,b=x

Fencing used=300ft

Fencing used=2x+y

300=2x+y

y=300-2x

Area of rectangle pasture=xy

[tex]A=x\times (300-2x)[/tex]

[tex]A=300x-2x^2[/tex]

Differentiate w.r.t x

[tex]\frac{dA}{dx}=300-4x[/tex]

[tex]\frac{dA}{dx}=0[/tex]

[tex]300-4x=0[/tex]

[tex]4x=300[/tex]

[tex]x=\frac{300}{4}=75[/tex]

Again, differentiate w.r.t x

[tex]\frac{d^A}{dx^2}=-4<0[/tex]

Hence, the area is maximum at x=75

Width of rectangle pasture,x=75 feet

Length of rectangle pasture,l=300-2(75)=150 feet

Dimension of rectangle pasture=(l,b)=(150 feet,75 feet)