What is the exact value of Sine (7pi/12)?

The required value Sine (7pi/12) [tex]=\frac{\sqrt{6} +\sqrt{2} }{4}[/tex]. Option d is correct.
Value of Sine (7pi/12) to be evaluate.
It is to operate and interpret the function to make function simple or more understandable called simplification.
Here,
[tex]=sin(7\pi /12)\\=sin(105)\\=sin(60+45)\\= sin60cos45+cos45sin60\\=\sqrt{3} /2 *1/\sqrt{2} +1/\sqrt{2} *1/2\\\frac{\sqrt{6}+\sqrt{2} }{4}[/tex]
Thus, the required value Sine (7pi/12) [tex]=\frac{\sqrt{6} +\sqrt{2} }{4}[/tex].
Learn more about simplification here: https://brainly.com/question/12501526
#SPJ2