1. 1. All roses are red.
2. I have a red flower.
3. I have a rose.

Which of the following best describes this series of statements?
A. inductive reasoning with valid inference in Point 1

B. deductive reasoning with a valid conclusion in Point 3

C inductive reasoning with an invalid inference in Point 1

D. deductive reasoning with an invalid conclusion in Point 3

Respuesta :

The correct answer for the given series of statement above would be option D. The series of statements  above presents a deductive reasoning with an invalid conclusion in Point 3. Just because she has a rose, doesn't mean it is always red in color. 

The correct answer is D. Deductive reasoning with an invalid conclusion in Point 3

Explanation:

Deductive reasoning is the process of concluding something by reasoning about a specific statement or statements, usually called premises. Deductive reasoning differs from inductive reasoning as a general premise is taken to a particular or specific case, instead of generalizing as in inductive reasoning. Additionally, whether the conclusion of a premise is true or not depends on whether all the premises are true. Considering this it can be said, this example shows a deductive reasoning as it begins in a general premise and apply that premise to a particular case, however, the conclusion is invalid as not all the premises are true as "all roses are red" is a wrong premise as roses are of different colors and thus, the conclusion "I have a rose" is also invalid.