Respuesta :

kxties
The answer is 4! If you plug in the 1 for x in f(x), that gives you 8. Then you plug in f(x) into g(x), you get 4!

Answer:

Option c is correct.

the value of g(f(1)) is, 4

Step-by-step explanation:

Given the functions:

[tex]f(x) = 6x+2[/tex]

[tex]g(x) = \frac{2x+4}{5}[/tex]

We have to find the g(f(1):

[tex]g(f(x)) = g(6x+2)[/tex]

Substitute 6x+2 in place of x in the function g(x) we have;

[tex]g(f(x)) = g(6x+2) = \frac{2(6x+2)+4}{5}[/tex]

⇒[tex]g(f(x)) = \frac{12x+4+4}{5} = \frac{12x+8}{5}[/tex]

Substitute x = 1 we have;

[tex]g(f(1)) = \frac{12(1)+8}{5} = \frac{12+8}{5} = \frac{20}{5}=4[/tex]

Therefore, the value of g(f(1)) is, 4