Respuesta :

Answer:With what does though

Step-by-step explanation:

Answer:

[tex]\frac{dx}{dt}=0[/tex]

Step-by-step explanation:

We have:

[tex]y^2+xy-3x=8[/tex]

Where both x and y are functions of t.

To find our solution, let's first take the derivative of both sides with respect to t:

[tex]\frac{d}{dt}[y^2+xy-3x]=\frac{d}{dt}[8][/tex]

Expand:

[tex]\frac{d}{dt}[y^2]+\frac{d}{dt}[xy]+\frac{d}{dt}[-3x]=\frac{d}{dt}[8][/tex]

Differentiate. We must differentiate implicitly. Also, for the second term, we must use the product rule. So:

[tex](2y\frac{dy}{dt})+(\frac{dx}{dt}y+x\frac{dy}{dt})-(3\frac{dx}{dt})=0[/tex]

Simplify:

[tex]2y\frac{dy}{dt}+\frac{dx}{dt}y+x\frac{dy}{dt}-3\frac{dx}{dt}=0[/tex]

We know that dy/dt is 3 when x is -4 and y is 2.

So, to find dx/dt, substitute 3 for dy/dt, -4 for x, and 2 for y. This yields:

[tex]2(2)(3)+\frac{dx}{dt}(2)+(-4)(3)-3\frac{dx}{dt}=0[/tex]

Simplify:

[tex]12+2\frac{dx}{dt}-12-3\frac{dx}{dt}=0[/tex]

Simplify:

[tex]-\frac{dx}{dt}=0[/tex]

Divide both sides by -1:

[tex]\frac{dx}{dt}=0[/tex]

最终答案是零 :)