plz help fast there is a (pic)

Answer:
[tex]\boxed {s = 14}[/tex]
Step-by-step explanation:
Solve for the value of [tex]s[/tex]:
[tex]\frac{2}{3}s + \frac{5}{6}s = 21[/tex]
-Combine like terms:
[tex]\frac{2}{3}s + \frac{5}{6}s = 21[/tex]
[tex]\frac{3}{2}s = 21[/tex]
-Multiply [tex]\frac{2}{3}[/tex] on both sides, which is the reciprocal of [tex]\frac{3}{2}[/tex], and multiply [tex]21[/tex] and [tex]2[/tex]:
[tex]s = 21 \times (\frac{2}{3})[/tex]
[tex]s = \frac{21 \times 2}{3}[/tex]
[tex]s = \frac{42}{3}[/tex]
-Divide [tex]42[/tex] by [tex]3[/tex]:
[tex]s = \frac{42}{3}[/tex]
[tex]\boxed {s = 14}[/tex]
Therefore, the value of [tex]s[/tex] is [tex]14[/tex].