Respuesta :

Answer:

[tex]\boxed {s = 14}[/tex]

Step-by-step explanation:

Solve for the value of [tex]s[/tex]:

[tex]\frac{2}{3}s + \frac{5}{6}s = 21[/tex]

-Combine like terms:

[tex]\frac{2}{3}s + \frac{5}{6}s = 21[/tex]

[tex]\frac{3}{2}s = 21[/tex]

-Multiply [tex]\frac{2}{3}[/tex] on both sides, which is the reciprocal of  [tex]\frac{3}{2}[/tex], and multiply  [tex]21[/tex] and [tex]2[/tex]:

[tex]s = 21 \times (\frac{2}{3})[/tex]

[tex]s = \frac{21 \times 2}{3}[/tex]

[tex]s = \frac{42}{3}[/tex]

-Divide [tex]42[/tex] by [tex]3[/tex]:

[tex]s = \frac{42}{3}[/tex]

[tex]\boxed {s = 14}[/tex]

Therefore, the value of [tex]s[/tex] is [tex]14[/tex].