Respuesta :

Given :

Two equation [tex]x_1 +5x_2 =7[/tex] and [tex]x_1 - 2x_2 = -2[/tex] .

To Find :

The point of intersection of these lines .

Solution :

We will use elimination method :

From equation 1 :

[tex]x_1=7-5x_2[/tex]

Putting value of [tex]x_1[/tex] in equation 2 we get :

[tex](7-5x_2)-2x_2=-2\\\\7-7x_2=-2\\\\x_2=\dfrac{9}{7}[/tex]

Putting value of [tex]x_2[/tex] in equation 1 we get :

[tex]x_1+5\times \dfrac{9}{7}=7\\\\x_1=\dfrac{4}{7}[/tex]

Therefore , point of interaction is [tex](\dfrac{4}{7},\dfrac{9}{7})[/tex] .

Hence , this is the required solution .

The point is: [tex]\left(x_{1},x_{2}\right)=\left(\frac{4}{7},\frac{9}{7}\right)[/tex]

We will solve the given system of equations.

Subtract the second equation from the first one:

[tex]\left(x_{1}+5x_{2}\right)-\left(x_{1}-2x_{2}\right)=7-\left(-2\right)\\x_{1}+5x_{2}-x_{1}+2x_{2}=7+2\\7x_{2}=9\\x_{2}=\frac{9}{7}[/tex]

Then we plug [tex]x_{2}=\frac{9}{7}[/tex] in the given first equation.

[tex]x_{1}+5x_{2}=7\\x_{1}+5\left(\frac{9}{7}\right)=7\\x_{1}+\frac{45}{7}=7\\x_{1}=7-\frac{45}{7}\\x_{1}=\frac{4}{7}[/tex]

So the point is: [tex]\left(x_{1},x_{2}\right)=\left(\frac{4}{7},\frac{9}{7}\right)[/tex]

Learn more: https://brainly.com/question/16236436