Respuesta :

Answer:

2 real roots

2 imaginary roots

Step-by-step explanation:

So we have the function:

[tex]f(x)=x^4-15x^2-16[/tex]

And we want to find its zeros.

First, let u equal x². So:

[tex]0=u^2-15u-16[/tex]

Factor:

[tex]0=(u-16)(u+1)[/tex]

Zero Product Property:

[tex]u-16=0\text{ or }u+1=0[/tex]

Add 16; Subtract 1. Replace u:

[tex]x^2=16\text{ or }x^2=-1[/tex]

Take the square root:

[tex]x=\pm 4\text{ or }x=\pm i[/tex]

So, our solutions are 2 real roots and 2 imaginary roots.