Respuesta :

Complete Question  

A very long, straight solenoid with a cross-sectional area of 2.39cm2 is wound with 85.7 turns of wire per centimeter. Starting at t= 0, the current in the solenoid is increasing according to i(t)=( 0.162A/s2) t2. A secondary winding of 5 turns encircles the solenoid at its center, such that the secondary winding has the same cross-sectional area as the solenoid. What is the magnitude of the emf induced in the secondary winding at the instant that the current in the solenoid is 3.2A ?

Answer:

The value  is [tex]\epsilon =  1.83 *10^{-5} \  V[/tex]

Explanation:

From the question we are told that

    The  cross-sectional area is  [tex]A = 2.39 \ cm^2 = \frac{2.39}{10000} = 0.000239 \ m^2[/tex]

    The  number of turns is  [tex]N = 85.7 \ turns/cm = 8570 \ turns / m[/tex]

    The initial time is  t = 0s

    The  current on the solenoid  is [tex]I(t)   = (0.162 \ A/s^2) t^2[/tex]

     The number of turns of the secondary winding is  [tex]n =  5 \ turns[/tex]

     

Generally At I =  3.2 A

        [tex]3.2 =  (0.162 )t^2[/tex]

=>       [tex]t^2  =  19.8[/tex]

=>         [tex]t =  4.4 \  s[/tex]

Generally induced emf is mathematically represented as

        [tex]\epsilon  = A *  \mu_o *  n *  N  \frac{d(I)}{dt}[/tex]

         [tex]\epsilon  =  0.000239 *  4\pi * 10^{-7} *  8570 * 5 *  (0.162) * 2t[/tex]

          [tex]\epsilon  =  0.000239 *  4\pi * 10^{-7} *  8570 * 5 *  (0.162) * 2 *  4.4[/tex]  

        [tex]\epsilon =  1.83 *10^{-5} \  V[/tex]