Answer:
[tex]p_{PCl_3}=0.693atm\\\\p_{Cl_2}=0.693atm\\\\p_{PCl_5}=0.967atm[/tex]
Explanation:
Hello,
In this case, for the given reaction, the equilibrium expression is:
[tex]Kp=\frac{p_{PCl_3}p_{Cl_2}}{p_{PCl_5}}[/tex]
But in terms of the reaction extent [tex]x[/tex] can also be written as:
[tex]Kp=\frac{x*x}{p_0-x}[/tex]
Whereas the initial pressure is 1.66 atm. Thus, we write:
[tex]0.497=\frac{x^2}{1.66atm-x}[/tex]
And solving for [tex]x[/tex] we obtain:
[tex]x=0.693atm[/tex]
Therefore, the pressure of each species at equilibrium is:
[tex]p_{PCl_3}=x=0.693atm\\\\p_{Cl_2}=x=0.693atm\\\\p_{PCl_5}=1.66atm-0.693atm=0.967atm[/tex]
Best regards.