Answer:
R''(2,-3), S''(-2,-1) and T'(-1,-5).
Step-by-step explanation:
The given vertices of triangle are R(2, 3), S(-2, 1), and T(-1, 5).
Reflection over the y-axis:
[tex](x,y)\to (-x,y)[/tex]
Using this rule, the vertices after reflection are
[tex]R(2,3)\to R'(-2,3)[/tex]
[tex]S(-2,1)\to S'(2,1)[/tex]
[tex]T(-1,5)\to T'(1,5)[/tex]
Rotation at 180 degrees around the origin.
[tex](x,y)\to (-x,-y)[/tex]
Using this rule, the vertices after reflection are
[tex]R'(-2,3)\to R''(2,-3)[/tex]
[tex]S'(2,1)\to S''(-2,-1)[/tex]
[tex]T'(1,5)\to T''(-1,-5)[/tex]
Therefore, the coordinates of vertices after the two transformations are R''(2,-3), S''(-2,-1) and T'(-1,-5).