Triangle RST has the vertices R(2, 3), S(-2, 1), and T(-1, 5). What are the coordinates after the two transformations: Reflection over the y-axis and rotation at 180 degrees around the origin

Respuesta :

Answer:

R''(2,-3), S''(-2,-1) and T'(-1,-5).

Step-by-step explanation:

The given vertices of triangle are R(2, 3), S(-2, 1), and T(-1, 5).

Reflection over the y-axis:

[tex](x,y)\to (-x,y)[/tex]

Using this rule, the vertices after reflection are

[tex]R(2,3)\to R'(-2,3)[/tex]

[tex]S(-2,1)\to S'(2,1)[/tex]

[tex]T(-1,5)\to T'(1,5)[/tex]

Rotation at 180 degrees around the origin.

[tex](x,y)\to (-x,-y)[/tex]

Using this rule, the vertices after reflection are

[tex]R'(-2,3)\to R''(2,-3)[/tex]

[tex]S'(2,1)\to S''(-2,-1)[/tex]

[tex]T'(1,5)\to T''(-1,-5)[/tex]

Therefore, the coordinates of vertices after the two transformations are R''(2,-3), S''(-2,-1) and T'(-1,-5).