contestada

What two rational expressions sum to 2x+3/x^2-5x+4

Enter your answer by filling in the boxes. Enter your answer so that each rational expression is in simplified form.

What two rational expressions sum to 2x3x25x4Enter your answer by filling in the boxes Enter your answer so that each rational expression is in simplified form class=

Respuesta :

Answer:

[tex] \frac{2x + 3}{(x- 1)(x - 4)} = \frac{-5}{3(x- 1)} + \frac{11}{3(x - 4)} [/tex]

Step-by-step explanation:

Given the rational expression: [tex] \frac{2x + 3}{x^2 - 5x + 4} [/tex], to express this in simplified form, we would need to apply the concept of partial fraction.

Step 1: factorise the denominator

[tex] x^2 - 5x + 4 [/tex]

[tex] x^2 - 4x - x + 4 [/tex]

[tex] (x^2 - 4x) - (x + 4) [/tex]

[tex] x(x - 4) - 1(x - 4) [/tex]

[tex] (x- 1)(x - 4) [/tex]

Thus, we now have: [tex] \frac{2x + 3}{(x- 1)(x - 4)} [/tex]

Step 2: Apply the concept of Partial Fraction

Let,

[tex] \frac{2x + 3}{(x- 1)(x - 4)} [/tex] = [tex] \frac{A}{x- 1} + \frac{B}{x - 4} [/tex]

Multiply both sides by (x - 1)(x - 4)

[tex] \frac{2x + 3}{(x- 1)(x - 4)} * (x - 1)(x - 4) [/tex] = [tex] (\frac{A}{x- 1} + \frac{B}{x - 4}) * (x - 1)(x - 4) [/tex]

[tex] 2x + 3 = A(x - 4) + B(x - 1) [/tex]

Step 3:

Substituting x = 4 in [tex] 2x + 3 = A(x - 4) + B(x - 1) [/tex]

[tex] 2(4) + 3 = A(4 - 4) + B(4 - 1) [/tex]

[tex] 8 + 3 = A(0) + B(3) [/tex]

[tex] 11 = 3B [/tex]

[tex] \frac{11}{3} = B [/tex]

[tex] B = \frac{11}{3} [/tex]

Substituting x = 1 in [tex] 2x + 3 = A(x - 4) + B(x - 1) [/tex]

[tex] 2(1) + 3 = A(1 - 4) + B(1 - 1) [/tex]

[tex] 2 + 3 = A(-3) + B(0) [/tex]

[tex] 5 = -3A [/tex]

[tex] \frac{5}{-3} = \frac{-3A}{-3} [/tex]

[tex] A = -\frac{5}{3} [/tex]

Step 4: Plug in the values of A and B into the original equation in step 2

[tex] \frac{2x + 3}{(x- 1)(x - 4)} = \frac{A}{x- 1} + \frac{B}{x - 4} [/tex]

[tex] \frac{2x + 3}{(x- 1)(x - 4)} = \frac{-5}{3(x- 1)} + \frac{11}{3(x - 4)} [/tex]