Q1. when 3b-4a is evaluated for a=0.5 and b=-0.333333333. what is the answer?

Q2. solution for equation
5(x+1)-3(3x-1)=15(x-2)

Q3. which is not equivalent to 4(2x-1)=3(x+1)-2
A. (2)
B. (-2)
C. (0)
D. (-3)


Q4. if a<0 and b<0 which of the following is not positive
A. ab
B. a+b
C. a÷b
D. a.a
E. a:a

Respuesta :

Answer:

See below

Step-by-step explanation:

Q1. when 3b-4a is evaluated for a=0.5 and b=-0.333333333. what is the answer?

[tex]3b-4a, a=0.5 \text{ and } b=-0.333333...[/tex]

Once

[tex]$-0.3333333... = -\frac{1}{3} \text{ and } 0.5=\frac{1}{2} $[/tex]

[tex]$3\cdot \left(-\frac{1}{3}\right) - 4 \cdot \frac{1}{2} = -1 - 2 =\boxed{-3}$[/tex]

Q2. solution for equation  

[tex]5(x+1)-3(3x-1)=15(x-2)[/tex]

[tex]5x+5-9x+3 = 15x-30[/tex]

[tex]-4x+8 = 15x-30[/tex]

[tex]38 = 19x[/tex]

[tex]$x=\frac{38}{19} = \boxed{2}$[/tex]

Q3. which is not equivalent to [tex]4(2x-1)=3(x+1)-2[/tex]

Just try all the values.

None of them makes the equation equivalent.

[tex]8x-4=3x+1-2[/tex]

[tex]5x=5[/tex]

[tex]\boxed{x=1}[/tex]

Q4. if a<0 and b<0 which of the following is not positive

B. a+b

[tex]a<0 \implies \text{a is negative}[/tex]

[tex]b<0 \implies \text{b is negative}[/tex]

[tex]a \cdot b \implies \text{positive value}[/tex]

[tex]$\frac{a}{b} \implies \text{positive number}$[/tex]

[tex]a:b \text{ is just another notation for division}[/tex]

[tex]a+b \implies \text{negative number}[/tex]