Respuesta :
Answer:
Following are the answer to the given choices:
Step-by-step explanation:
In potion A:
The model, that will be formed can be defined as follows:
[tex]\widehat{W age} = \hat b_{0} + \hat b_{1} x Y_{rs} \epsilon done \\\\ \hat B_1 = \frac{\sum_{i=1}^{n} (W_{age}i - \widehat{W age} \times (Y_{rs} Edui - \widehat{Y_{rs}\epsilon})}{\int S_{yrs}\epsilon dre}\\[/tex]
[tex]\ the \ new \ W_{age} = 10^{-3} \times W_{age} \\\\\hat {B_{1 new}} = 10^{-3} \hat {B}\\\\ \hat{B_{0}} = \widehat{W age} -\hat {B_1} \bar{Y_{rs}\epsilon dus} \\\\\hat{B_{0 \ new}} = \widehat{W age} \times 10^{-3} - 10^{-3} \hat {B_1} Y_{rs}\epsilon dus \\[/tex]
[tex]= 10^{-3} \hat {B_0}\\[/tex]
[tex]\hat B_{0 \ new} = 15 \times 10^{-3} \\\hat B_{1 \ new} = 0.28 \times 10^{-3} \\[/tex]
In potion B:
[tex]\ The \ new \ Y_{rs}\epsilon dus = \frac{Y_{rs} \epsilon dus}{7} \\\hat b_{1 \ new} = 7 \hat b_1\\\hat b_{ 0 \ new } = \widehat{W_{age}} - 7 \hat b_1 \times \frac{\bar Y_{rs}\epsilon dus}{7} \\\hat b_{0 \ new} = \hat B_{0}\\\hat b_{0} = 15.00 \\\hat b_{1} = 0.04 \\[/tex]
In potion C:
[tex]\ Y_{rs}\epsilon dus \ new = \frac{Y_{rs} \epsilon dus}{180} \\\\\widehat{W_{age} new} = \widehat{W_{age}} \times 10^{-2} \\\\\hat b_{1 \ new} = \hat b_{1} \times 10^{-2} \times 180 = \hat b_1 \times 1.8 \\\\\ hat b_{ 0 \ new } = 10^{-2} \widehat{W_{age}} - \hat b_1 \times 1.8 \times \frac{\bar Y_{rs}\epsilon dus}{180} \\\\[/tex]
[tex]= 10^{-2} \ \hat B_{0}\\[/tex]
[tex]\hat b_{0 \ new} = 0.15 \\\hat b_{1 \ new} = 0.504 \\[/tex]