Respuesta :

Answer:

[tex]\frac{dy}{dx}=(\frac{(2x-2)(x^3+3)-(x^2-2x)(3x^2)}{(x^3+3)^2})[/tex]

Step-by-step explanation:

So we want to find the derivative of the rational equation:

[tex]y=\frac{x^2-2x}{x^3+3}[/tex]

First, recall the quotient rule:

[tex](\frac{f}{g})'=\frac{f'g-fg'}{g^2}[/tex]

Let f be x^2-2x and let g be x^3+3.

Calculate the derivatives of each:

[tex]f=x^2-2x\\f'=2x-2[/tex]

[tex]g=x^3+3\\g=3x^2[/tex]

So:

[tex]\frac{dy}{dx}=(\frac{x^2-2x}{x^3+3})'[/tex]

Use the above format:

[tex]\frac{dy}{dx}=\frac{f'g-fg'}{g^2}\\\frac{dy}{dx}=(\frac{(2x-2)(x^3+3)-(x^2-2x)(3x^2)}{(x^3+3)^2})[/tex]

And that's our answer :)

(If you want to, you can also expand. However, no terms will be canceled.)