Answer:
9.46%
Explanation:
Eric gets compounded interest = principal x (1 + interest rate)ⁿ
Mike gets simple interest = principal x [1 + (interest rate x n)]
during the first 7.5 years, Eric will get: 100 x (1 + 0.5i)¹⁵, in order to simplify the calculations we can call this Principal₇.₅
during the last 6 months Eric will earn: [Principal₇.₅ x (1 + 0.5i)] - Principal₇.₅ *WE ONLY WANT TO CALCULATE THE INTEREST, NOT THE PRINCIPAL
Principal₇.₅ + Principal₇.₅ (0.5i) - Principal₇.₅ = Principal₇.₅ (0.5i)
now we replace Principal₇.₅ (0.5i):
100 x (1 + 0.5i)¹⁵ x 0.5i = 50i x (1 + 0.5i)¹⁵
since Mike earns simple interest, during the last 6 months he will earn:
200 x 0.5i = 100i
now we equal both equations:
50i x (1 + 0.5i)¹⁵ = 100i
(1 + 0.5i)¹⁵ = 100i / 50i = 2
(1 + 0.5i)¹⁵ = 2
¹⁵√(1 + 0.5i)¹⁵ = ¹⁵√2
1 + 0.5i = 1.04729
0.5i = 1.04729 - 1 = 0.04729
i = 0.04729 / 0.5 = 0.09458 = 9.46%