The tens digit in a two digit number is 4 greater than one’s digit. If we interchange the digits in the number, we obtain a new number that, when added to the original number, results in the sum of 88. Find this number

Respuesta :

Answer:

The original digit is 62

Step-by-step explanation:

Let the Tens be represented with T

Let the Units be represented with U

Given:

Unknown Two digit number

Required:

Determine the number

Since, it's a two digit number, then the number can be represented as;

[tex]T * 10 + U[/tex]

From the first sentence, we have that;

[tex]T = 4 + U[/tex]

[tex]T = 4+U[/tex]

Interchanging the digit, we have the new digit to be [tex]U * 10 + T[/tex]

So;

[tex](U * 10 + T) + (T * 10+ U) = 88[/tex]

[tex]10U + T + 10T + U= 88[/tex]

Collect Like Terms

[tex]10U + U + T + 10T = 88[/tex]

[tex]11U + 11T = 88[/tex]

Divide through by 11

[tex]U + T = 8[/tex]

Recall that [tex]T = 4+U[/tex]

[tex]U + T = 8[/tex] becomes

[tex]U + 4 + U = 8[/tex]

Collect like terms

[tex]U + U = 8 - 4[/tex]

[tex]2U = 4[/tex]

Divide both sides by 2

[tex]U = 2[/tex]

Substitute 2 for U in [tex]T = 4+U[/tex]

[tex]T = 4 + 2[/tex]

[tex]T = 6[/tex]

Recall that the original digit is [tex]T * 10 + U[/tex]

Substitute 6 for T and 2 for U

[tex]T * 10 + U[/tex]

[tex]6 * 10 + 2[/tex]

[tex]60 + 2[/tex]

[tex]62[/tex]

Hence, the original digit is 62