Respuesta :

Answer:

[tex] \frac{3a}{a-2} [/tex]

Step-by-step explanation:

[tex] \frac{2a - 7}{a}*\frac{3a^2}{2a^2 - 11a + 14} [/tex]

Factorise [tex] 2a^2 - 11a + 14} [/tex]

[tex]\frac{2a - 7}{a}*\frac{3a^2}{(2a - 7)(a - 2)}[/tex]

[tex] 2a - 7 [/tex] cancels  2a - 7

[tex] \frac{1}{a}*\frac{3a^2}{(1))(a - 2)} [/tex]

[tex] \frac{1(3a^2)}{a(a-2)} [/tex]

[tex] \frac{a(3a)}{a(a-2)} [/tex]

"a" cancels "a"

[tex] \frac{3a}{a-2} [/tex]

Thus,

[tex] \frac{2a - 7}{a}*\frac{3a^2}{2a^2 - 11a + 14} [/tex] = [tex] \frac{3a}{a-2} [/tex]