Respuesta :

●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●

               Hi my lil bunny!

❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙

Lets do this step by step.

This is the trigonometric form of a complex number where [tex]|z|[/tex] is the modulus and [tex]0[/tex] is the angle created on the complex plane.

[tex]z = a + bi = |z| (cos ( 0 ) + I sin (0))[/tex]

The modulus of a complex number is the distance from the origin on the complex plane.

[tex]|z| = \sqrt{a^2 + b^2}[/tex] where [tex]z = a + bi[/tex]

Substitute the actual values of a = -5 and b = -5.

[tex]|z| = \sqrt{(-5) ^2 + (-5) ^2}[/tex]

Now Find [tex]|z|[/tex] .

Raise - 5 to the power of 2.

[tex]|z| = \sqrt{25 + (-5) ^2}[/tex]

Raise - 5 to the power of 2.

[tex]|z| = \sqrt{25 + 25}[/tex]

Add 25 and 25.

[tex]|z| = \sqrt{50}[/tex]

Rewrite 50 as 5^2 . 2 .

[tex]|z| = 5\sqrt{2}[/tex]

Pull terms out from under the radical.

[tex]|z| = 5\sqrt{2}[/tex]

The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.

[tex]0 = arctan (\frac{-5}{-5} )[/tex]

Since inverse tangent of  [tex]\frac{-5}{-5}[/tex]  produces an angle in the third quadrant, the value of the angle is [tex]\frac{5\pi }{4}[/tex] .

[tex]0 = \frac{5\pi }{4}[/tex]

Substitute the values of [tex]0 = \frac{5\pi }{4}[/tex] and [tex]|z| = 5\sqrt{2}[/tex] .

[tex]5\sqrt{2} ( cos( \frac{5\pi}{4}) + i sin (\frac{5\pi}{4}))[/tex]

❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙

●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●

Hope this helped you.

Could you maybe give brainliest..?

❀*May*❀

Answer:

five square root two times the quantity cosine of five pi divided by four plus i times sine of five pi divided by four