Answer:
[tex]|7\cdot m -56| = -7\cdot m + 56[/tex] if [tex]m< 8[/tex]
Step-by-step explanation:
According to the definition of absolute value:
[tex]f(x)[/tex] if [tex]f(x) \geq 0[/tex]
[tex]-f(x)[/tex] if [tex]f(x) <0[/tex]
If [tex]m < 8[/tex], then:
[tex]y_{max} = 7\cdot (8) - 56[/tex]
[tex]y_{max} = 0[/tex]
[tex]y[/tex] becomes negative as [tex]m[/tex] diverges to [tex]-\infty[/tex].
Then, the absolute value can be rewritten as follows:
[tex]|7\cdot m - 56| = -(7\cdot m -56)[/tex] if [tex]m <8[/tex]
[tex]|7\cdot m -56| = -7\cdot m + 56[/tex] if [tex]m< 8[/tex]