asheemz01
contestada

The volume of a cone is 3.7x3 cubic units and its height is x units.
Which expression represents the radius of the cone's base, in units?
3x
6x
Зах?
9.xox2​

Respuesta :

Answer:

[tex]r = x\sqrt{3.54}[/tex]

Explanation:

The options are not well presented; However, the solution is as follows

Given

Shape: Cone

[tex]Volume = 3.7x^3[/tex]

Height = x

Required

Find the radius of the cone

The volume of a cone is:

[tex]Volume = \frac{1}{3}\pi r^2h[/tex]

Where h represents height and r represents radius;

Substitute x for h and [tex]3.7x^3[/tex] for Volume

[tex]\frac{1}{3}\pi r^2 * x = 3.7x^3[/tex]

Multiply both sides by 3

[tex]3 * \frac{1}{3}\pi r^2 * x = 3.7x^3 * 3[/tex]

[tex]\pi r^2 * x = 3.7x^3 * 3[/tex]

[tex]\pi r^2 * x = 11.1x^3[/tex]

Multiply both sides by x

[tex]\frac{\pi r^2 * x}{x} = \frac{11.1x^3}{x}[/tex]

[tex]\pi r^2 = \frac{11.1x^3}{x}[/tex]

[tex]\pi r^2 = 11.1x^2[/tex]

Take π as 3.14

[tex]3.14 * r^2 = 11.1x^2[/tex]

Divide both sides by 3.14

[tex]\frac{3.14 * r^2}{3.14} = \frac{11.1x^2}{3.14}[/tex]

[tex]r^2 = \frac{11.1x^2}{3.14}[/tex]

[tex]r^2 = 3.54x^2[/tex]

Take Square root of both sides

[tex]\sqrt{r^2} = \sqrt{3.54x^2}[/tex]

[tex]r = \sqrt{3.54x^2}[/tex]

Split the square root

[tex]r = \sqrt{3.54} * \sqrt{x^2}[/tex]

[tex]r = \sqrt{3.54} * x[/tex]

[tex]r = x\sqrt{3.54}[/tex]