The 2010 General Social Survey reported a sample where about 48% of US residents thought marijuana should be made legal. If we wanted to limit the margin of error of a 95% confidence interval to 4%, about how many Americans would we need to survey

Respuesta :

Answer:

The sample size is  [tex]n = 600[/tex]

Step-by-step explanation:

From the question we are told that

    The  sample proportion is  [tex]\r p = 0.48[/tex]

     The  margin of error is  [tex]MOE = 0.04[/tex]

Given that the confidence level is 95%  the level of significance is mathematically represented as

        [tex]\alpha = 100 - 95[/tex]

        [tex]\alpha = 5 \%[/tex]

        [tex]\alpha = 0.05[/tex]

Next  we obtain the critical value of  [tex]\frac{\alpha }{2}[/tex] from the normal distribution table , the values is

                   [tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]

The reason we are obtaining critical value of    [tex]\frac{\alpha }{2}[/tex] instead of    [tex]\alpha[/tex] is because  

[tex]\alpha[/tex] represents the area under the normal curve where the confidence level interval (  [tex]1-\alpha[/tex]) did not cover which include both the left and right tail while  

[tex]\frac{\alpha }{2}[/tex] is just the area of one tail which what we required to calculate the margin of error

Generally the margin of error is mathematically represented as

      [tex]MOE = Z_{\frac{\alpha }{2} } * \sqrt{ \frac{\r p(1- \r p )}{n} }[/tex]

substituting values

          [tex]0.04= 1.96* \sqrt{ \frac{0.48(1- 0.48 )}{n} }[/tex]

         [tex]0.02041 = \sqrt{ \frac{0.48(52 )}{n} }[/tex]

         [tex]0.02041 = \sqrt{ \frac{ 0.2496}{n} }[/tex]

          [tex]0.02041^2 = \frac{ 0.2496}{n}[/tex]

           [tex]0.0004166 = \frac{ 0.2496}{n}[/tex]

=>       [tex]n = 600[/tex]