Answer:
Step-by-step explanation:
Since the above sequence is a geometric sequence
An nth term of a geometric sequence is given by
[tex]A(n) = a(r)^{n - 1} [/tex]
where a is the first term
r is the common ratio
n is the number of terms
From the question
a = 10
To find the common ratio divide the previous term by the next term
That's
r = 30/10 = 3 or 90/30 = 3 or 270/90 = 3
Since we are finding the 12th term
n = 12
So the 12th term is
[tex]A(12) = 10( {3})^{12 - 1} [/tex]
[tex]A(12) = 10 ({3})^{11} [/tex]
Hope this helps you