Respuesta :

Answer:

[tex](-\frac{36}{7},\frac{40}{7})[/tex]

Step-by-step explanation:

Coordinates of points A and C are (-8, 6) and (2, 5).

If a point B intersects the segment AB in the ratio of 2 : 5

Then coordinates of the point B will be,

x = [tex]\frac{mx_2+nx_1}{m+n}[/tex]

and y = [tex]\frac{my_2+ny_1}{m+n}[/tex]

where [tex](x_1, y_1)[/tex] and [tex](x_2,y_2)[/tex] are the coordinates of the extreme end of the segment and a point divides the segment in the ratio of m : n.

For the coordinates of point B,

x = [tex]\frac{2\times 2+(-8)\times 5}{2+5}[/tex]

  = [tex]-\frac{36}{7}[/tex]

y = [tex]\frac{2\times 5+5\times 6}{2+5}[/tex]

  = [tex]\frac{40}{7}[/tex]

Therefore, coordinates of pint B will be,

[tex](-\frac{36}{7},\frac{40}{7})[/tex]